Photosynthetic properties were examined in several hcf (high chlorophyll fluorescence 11, 21, 42 and 45) nuclear recessive mutants of maize which were previously found to have normal photochemistry and low CO(2) fixation. Mutants usually either died after depletion of seed reserves (about 18 days after planting), or survived with slow growth up to 7 or 8 weeks. Both the activity and quantity of ribulose 1,5-bisphosphate carboxylase (Rubisco) were low in the mutants (5-25% of the normal siblings on a leaf area basis) and the loss of Rubisco tended to parallel the reduction in photosynthetic capacity. The Rubisco content in the mutants was often marginal for photosynthetic carbon gain, with some leaves and positions along a leaf having no net photosynthesis, while other leaves had a low carbon gain. Conversely, the activities of C(4) cycle enzymes, phosphoenolpyruvate carboxylase, pyruvate, Pi dikinase, NADP-malate dehydrogenase, and NADP-malic enzyme, were the same or only slightly reduced compared to the normal siblings. The mutants had about half as much chlorophyll content per leaf area as the normal green plants. However, the Rubisco activity in the mutants was low on both a leaf area and chlorophyll basis. Low Rubisco activity and lower chlorophyll content may both contribute to the low rates of photosynthesis in the mutants on a leaf area basis.
Read full abstract