Under the system of full straw returning, the relationship between soil fungal community diversity and soil physiochemical properties, and the combined application of slow-release nitrogen and urea is unclear. To evaluate its effect and provide an effective strategy for sustainable agricultural production, a 2-year field positioning trial was conducted using maize as the research object. The experiment was designed with two factors: straw treatment(S) and nitrogen fertilizer treatment(N),Six experimental treatments were set up,S1N0,S1N1,S1N2,S1N3,S1N4,S0N2,respectively.Analysis of 54 soil samples revealed 15 fungal phyla and 49 fungal classes. The composition of fungal communities in each treatment was basically the same, but there were significant differences in species abundance. Under total straw returning conditions, the combined application of slow-release nitrogen fertilizer and normal nitrogen fertilizer significantly increased the relative abundance of Ascomycota. During the jointing stage, tasseling stage and maturity stage, S1N4, S1N3 and S1N2 increased by 25.76%, 22.97%, 20.74%; 25.11%, 30.02%, 23.64% and 22.47%, 28.14%, 22.71% respectively compared with S0N2.The relative abundance of Basidiomycota was significantly reduced. Alpha diversity analysis showed that the straw returning mode significantly increased the Shannon index and decreased the Simpson index, which was obvious in the jointing stage and tasseling stage. The principal coordinate analysis analysis results showed that the fungal communities formed different clusters in the horizontal and vertical directions at the three growth stages of corn jointing, tasseling and maturity. At the jointing stage and tasseling stage, the communities of the straw return treatment and the straw removal treatment were separated, and the community distribution of each treatment was not significantly different in the mature stage. Total straw returning combined with slow-release fertilizer significantly (P<0.05) increased the soil organic carbon, nitrate nitrogen and ammonia nitrogen content in each growth period, and increased the soil total nitrogen and hydrolyzable nitrogen content (P>0.05).After the straw was returned to the field, the combined application of slow-release nitrogen fertilizer and common urea had a significant impact on soil urease, catalase, and sucrase activities. Among them, the three enzyme activities were the highest in the S1N3 treatment at the jointing stage and maturity stage, and the S1N4 treatment at the tasseling stage had the highest enzyme activity. Fungal community composition is closely related to environmental factors. Soil organic carbon, urease and catalase are positively correlated with Ascomycota and negatively correlated with Basidiomycota.