Abstract

Soil CO2 and CH4 concentrations are crucial determinants of crop physiology and the soil environment. However, the intricate relationships among soil respiration, soil nutrients, enzyme activities, and winter wheat growth in the presence of shallow groundwater remain enigmatic. This study aimed to investigate the dynamics of soil CO2 and CH4 concentrations and their correlations with soil nutrient content, enzymatic activities, and wheat root biomass to better understand the influence of shallow groundwater on soil environmental conditions. Lysimeter experiments were conducted at five groundwater depths (20, 40, 50, 60, and 80 cm) and three fertilizer application rates (low, 75%; normal, 100%; high, 125%). Soil CO2 (soil layer > 10 cm) and CH4 concentrations significantly decreased with increasing groundwater depth. The maximum values of root parameters and shoot biomass were mainly concentrated at 50–60 cm at the high fertilization level (except root length density, which was higher at the normal fertilization level), and were 0.36–77.4% higher than other treatments. Soil CO2 concentration showed positive correlations with organic matter and total N content, enzyme activities, and root biomass. Soil CH4 concentration had significant correlations with soil organic matter, total N, and available K. Compared to the fertilization level, groundwater depth emerged as a crucial factor as it affected soil physicochemical properties, soil enzymatic activities, root respiration, and winter wheat growth in shallow groundwater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.