Abstract
Agricultural soils are main sources and sinks of the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The source–sink function depends on soil characteristics, climate and management. Emission measurements usually quantify the net result of production, consumption and transport of these gases in the soil; they do not provide information about the depth distributions of the concentrations of these gases in the soil. Here we report on concentrations of CO2, CH4 and N2O in air of 300cm deep soil profiles, at resolutions of 30–50cm, over a full year. Gas samples were taken weekly in a long-term field experiment with an irrigated winter wheat–summer maize double cropping system, and four fertilizer N application rates (0, 200, 400 and 600kgNha−1year−1). The results showed distinct differences in CH4, CO2 and N2O concentrations profiles with soil depth. The concentrations of CO2 in soil air increased with soil depth and showed a seasonal pattern with relatively high concentrations in the warm and moist maize growing season and relatively low concentrations in the winter-wheat growing season. In contrast, CH4 concentrations decreased with depth, and did not show a distinct seasonal cycle. Urea application did not have a large effect on CH4 or CO2 concentrations, neither in the topsoil nor the subsoil. Concentrations of N2O responded to N fertilizer application and irrigation. Application of fertilizer strongly increased grain and straw yields of both winter wheat and summer maize, relatively to the control, but differences in yield between the treatments N200, N400 and N600 were not statistically significant. However, it significantly increased mean N2O concentrations peaks at basically all soil depths. Interestingly, concentrations of N2O increased almost instantaneously in the whole soil profile, which indicates that the soil had a relatively high diffusivity, despite compacted subsoil layers.In conclusion, the frequent measurements, at high depth resolutions, of concentrations of CH4, CO2 and N2O in soil air under a winter wheat–summer maize double crop rotation provide detailed insight into the production, consumption and transport of these gases in the soil. Concentrations of CH4, CO2 and N2O responded differently to management activities and weather conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.