The spin-charge-family theory is a kind of the Kaluza-Klein theories, but with two kinds of the spin connection fields, which are the gauge fields of the two kinds of spins. The SO(13,1) representation of one kind of spins manifests in d = (3 + 1) all the properties of family members as assumed by the standard model; the second kind of spins explains the appearance of families. The gauge fields of the first kind, carrying the space index m = (0,...,3), manifest in d = (3 + 1) all the vector gauge fields assumed by the standard model. The gauge fields of both kinds of spins, which carry the space index (7, 8) gaining at the electroweak break nonzero vacuum expectation values, manifest in d = (3 + 1) as scalar fields with the properties of the Higgs scalar of the standard model with respect to the weak and the hyper charge ( and , respectively), while they carry additional quantum numbers in adjoint representations, offering correspondingly the explanation for the scalar Higgs and the Yukawa couplings, predicting the fourth family and the existence of several scalar fields. The paper 1) explains why in this theory the gauge fields are with the scalar index s = (5,6,7,8) doublets with respect to the weak and the hyper charge, while they are with respect to all the other charges in the adjoint representations; 2) demonstrates that the spin connection fields manifest as the Kaluza-Klein vector gauge fields, which arise from the vielbeins; and 3) explains the role of the vielbeins and of both kinds of the spin connection fields.