Abstract

In this paper we explain the 750 GeV diphoton resonance observed at the run-2 LHC as a scalar singlet S, that plays a key role in generating tiny but nonzero Majorana neutrino masses. The model contains four electroweak singlets: two leptoquarks, a singly charged scalar and a neutral scalar S. Majorana neutrino masses might be generated at the two-loop level as S gets nonzero vacuum expectation value. S can be produced at the LHC through the gluon fusion and decays into diphoton with charged scalars running in the loop. The model fits perfectly with a narrow width of the resonance. Constraints on the model are investigated, which shows a negligible mixing between the resonance and the standard model Higgs boson.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.