It has long been known that people have the ability to estimate numerical quantities without counting. A standard account is that people develop a sense of the size of symbolic numbers by learning to map symbolic numbers (e.g., 6) to their corresponding numerosities (e.g. :::) and concomitant approximate magnitude system (ANS) representations. However, we here demonstrate that adults are capable of extracting fractional numerical quantities from non-symbolic visual ratios (i.e., labeling a ratio of two circle areas with the appropriate symbolic fraction). Not only were adult participants able to perform this task, but they were remarkably accurate: linear regressions on median estimates yielded slopes near 1, and accounted for 97% of the variability. Participants also performed at least as well on line-estimation and ratio-estimation tasks using non-numeric circular stimuli as they did in earlier experiments using non-symbolic numerosities, which are frequently considered to be numeric stimuli. We discuss results as consistent with accounts suggesting that non-symbolic ratios have the potential to act as a reliable and stable ground for symbolic number, even when composed of non-numeric stimuli.
Read full abstract