Abstract

In their 2016 Psych Science article, Matthews, Lewis and Hubbard (2016, https://doi.org/10.1177/0956797615617799) leveled a challenge against the prevailing theory that fractions—as opposed to whole numbers—are incompatible with humans’ primitive nonsymbolic number sense. Their ratio processing system (RPS) account holds that humans possess a primitive system that confers the ability to process nonysmbolic ratio magnitudes. Perhaps the most striking finding from Matthews et al. was that ratio processing ability predicted symbolic fractions knowledge and algebraic competence. The purpose of the current study was to replicate Matthews et al.’s novel results and to extend the study by including a control measure of fluid intelligence and an additional nonsymbolic magnitude format as predictors of multiple symbolic math outcomes. Ninety-nine college students completed three comparison tasks deciding which of two nonsymbolic ratios was numerically larger along with three simple magnitude comparison tasks in corresponding formats that served as controls. The formats included were lines, circles, and dots. We found that RPS acuity predicted fractions knowledge for three university math placement exam subtests when controlling for simple magnitude acuities and inhibitory control. However, this predictive power of the RPS measure appeared to stem primarily from acuity of the line-ratio format, and that predictive power was attenuated with the inclusion of fluid intelligence. These findings may help refine theories positing the RPS as a domain-specific foundation for building fractional knowledge and related higher mathematics.

Highlights

  • We included a task × format interaction term in the model to check whether observed format differences differed depending on whether participants were comparing ratios or making simple magnitude comparisons

  • To facilitate evaluation of our hypotheses for how ws would vary with format and task, we used a backward difference coding scheme to compare adjacent levels of variables

  • We further refined Matthews et al.’s results by demonstrating that the predictive power of nonsymbolic ratio processing was specific to a particular format—line ratios

Read more

Summary

Objectives

The purpose of the current study was to replicate Matthews et al.’s novel results and to extend the study by including a control measure of fluid intelligence and an additional nonsymbolic magnitude format as predictors of multiple symbolic math outcomes. We aimed to replicate Matthews et al.’s novel results using some identical tasks, a similar protocol, and a sample drawn from roughly the same population

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.