Abstract

A fundamental question about fractions is whether they are grounded in an abstract nonsymbolic magnitude code similar to that postulated for whole numbers. Mounting evidence suggests that symbolic fractions could be grounded in mechanisms for perceiving nonsymbolic ratio magnitudes. However, systematic examination of such mechanisms in children has been lacking. We asked second- and fifth-grade children (prior to and after formal instructions with fractions, respectively) to compare pairs of symbolic fractions, nonsymbolic ratios, and mixed symbolic–nonsymbolic pairs. This paradigm allowed us to test three key questions: (a) whether children show an analog magnitude code for rational numbers, (b) whether that code is compatible with mental representations of symbolic fractions, and (c) how formal education with fractions affects the symbolic–nonsymbolic relation. We examined distance effects as a marker of analog ratio magnitude processing and notation effects as a marker of converting across numerical codes. Second and fifth graders’ reaction times and error rates showed classic distance and notation effects. Nonsymbolic ratios were processed most efficiently, with mixed and symbolic notations being relatively slower. Children with more formal instruction in symbolic fractions had a significant advantage in comparing symbolic fractions but had a smaller advantage for nonsymbolic ratio stimuli. Supplemental analyses showed that second graders relied on numerator distance more than holistic distance and that fifth graders relied on holistic fraction magnitude distance more than numerator distance. These results suggest that children have a nonsymbolic ratio magnitude code and that symbolic fractions can be translated into that magnitude code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call