The evolution of the electronic industry constantly relies on downscaling of electronic devices and integrating novel materials in active regions to accomplish ever-higher speeds and new features in device structures. Employing materials that display multistate switching for resistive-random-access-memory or simply resistive memory could be a simple and effective way to realize high density data storage. In this context, we report multistate “nonpolar” resistive switching in a nickel embedded polyoxovanadate cluster, (K2H5[NiV14O40]) – a molecule that belongs to the larger polyoxometalate family. We observed unique and distinctive nonpolar resistive switching behaviour for the first time in a multi-redox polyoxometalate cluster. The switching characteristics were repeatable for more than 200 cycles. Our two terminal Al/K2H5[NiV14O40])/ITO memory cells exhibited considerably high resistance window (105) and also long retention time (2000 s). This work holds promise for a novel strategy in order to achieve multilevel storage by exploiting different varieties of polyoxometalate molecules as active switching element that can possibly connect memory with neuromorphic computing.
Read full abstract