In this paper, a distributed nonsingular terminal sliding mode control (NTSMC) is proposed for vehicular platoons subjected to nonlinear uncertainty, external disturbance, and input saturation. Due to the presence of input saturation, the platoon control becomes more complicated. However, only considering the impact of uncertainty on the system, input saturation will usually lead to a decline in the driving performance, even lead to string instability. First, the input saturation is compensated by a single parameter, which is simple and direct. The radial basis function neural network (RBFNN) based on disturbance observer is employed to compensate the nonlinear uncertainty and external disturbance, respectively. The basis function of neural network is only related to the velocity and acceleration of the leader. Therefore, the nonlinearity of the vehicle systems does not need to meet the matching conditions. Then, a distributed NTSMC is designed to realize the internal stability, which weakens the chattering of traditional sliding mode control (SMC) to some extent. In addition, the nonsingular problem in terminal sliding mode control (TSMC) is solved. The string stability is realized by employing a coupled sliding mode control (CSMC). Finally, simulation results demonstrate the effectiveness and feasibility of the proposed strategy.