Abstract

In this paper, we investigate the orbit-adjustment problem of satellite systems in the presence of nonlinear uncertainties in kinematics and dynamics. We propose a novel direct adaptive fuzzy control scheme with prescribed tracking accuracy to address uncertain nonlinear dynamics by employing advanced fuzzy logic systems and integrating a class of sophisticated smooth functions, thereby ensuring convergence of the tracking error within a precisely defined interval. The ingeniously designed control scheme guarantees negative semi-definiteness of the Lyapunov function, ensuring boundedness for all variables. Moreover, our groundbreaking control approach requires only one adaptive law, completely eliminating any direct correlation with the number of nonlinear functions. Simulation results unequivocally validate the remarkable effectiveness and superiority of our innovative control approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.