We have proposed a spin-wave transducer structure named film-penetrating transducers (FPTs). FPTs penetrate an on-chip magnetic film for a spin-wave transmission medium and allow flexible spatial arrangements of many exciters/detectors due to their zero-dimensional feature. We constructed four device models with different spatial arrangements of FPT/conventional exciters using a 10-nm-thick ferrimagnetic garnet film with a central FPT detector. We performed numerical experiments that combine electromagnetics with micromagnetics including thermal noise at 300 K. We evaluated important device features of FPTs, such as the signal-to-noise ratios (SNRs), input/output signal transmission efficiencies, and nonlinear phenomena of spin waves. We applied in-phase sinusoidal input currents with various amplitudes and frequencies and altered the damping strengths near the film boundaries. We obtained sufficient SNRs for the practical use of FPTs and revealed that FPTs have both higher transmission efficiencies and nonlinear strengths than conventional antennas, as the input frequency approaches the ferromagnetic resonance frequency of the film. Moreover, we observed and analyzed various nonlinear phenomena of spin waves, including beats in the time-domain waveform, components of integer harmonic frequencies, wide-range scatterings of inter-harmonic frequencies, and frequency doubling in spin precession. These characteristics probably originate from various device effects: FPTs effectively excite dipolar spin waves with large-angle precession, propagating spin waves reflect from the film boundaries, and spin waves dynamically and nonlinearly interfere with each other. This study demonstrated that FPTs have promising features for both their applications to reservoir computing and the studies on the physics of nonlinear and space-varying spin waves.
Read full abstract