Abstract

Physical reservoir computing, which is a promising method for the implementation of highly efficient artificial intelligence devices, requires a physical system with nonlinearity, fading memory, and the ability to map in high dimensions. Although it is expected that spin wave interference can perform as highly efficient reservoir computing in some micromagnetic simulations, there has been no experimental verification to date. Herein, reservoir computing is demonstrated that utilizes multidetected nonlinear spin wave interference in an yttrium‐iron‐garnet single crystal. The subject computing system achieves excellent performance when used for hand‐written digit recognition, second‐order nonlinear dynamical tasks, and nonlinear autoregressive moving average (NARMA). It is of particular note that normalized mean square errors for NARMA2 and second‐order nonlinear dynamical tasks are 1.81 × 10−2 and 8.37 × 10−5, respectively, which are the lowest figures for any experimental physical reservoir so far reported. Said high performance is achieved with higher nonlinearity and the large memory capacity of interfered spin wave multidetection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.