AbstractDynamic kernel principal component analysis (DKPCA) has been frequently implemented for nonlinear and dynamic process monitoring of complex industrial processes. However, traditional DKPCA focuses only on the global structural analysis of data sets and strongly neglects the local information, which is equally essential for process detection and identification. In this paper, an improved DKPCA, referred to as the local DKPCA (LDKPCA), is proposed based on local preserving projections (LPP) for nonlinear dynamic process fault diagnosis. The method combines the advantages of LPP and DKPCA by utilizing the local structure feature to maintain the geometric structure of the data in a unified framework. To achieve a highly comprehensive feature extraction, the local characteristics are fused in DKPCA to produce an optimization objective. The neighbouring points of the new objective function projection in the feature space are still maintained in proximity, and the variance information is retained simultaneously. For the purpose of fault detection, two statistics, known as theT2and squared prediction error (SPE) statistics, are constructed, based on the LDKPCA model, and used to monitor the latent variable space and the residual space, respectively. In addition, the sensitivity analysis is brought in for fault identification of the two statistics. Based on the experimental analysis using the shaft breakage data of an offshore oilfield electric submersible pump (ESP), the proposed method outperforms the conventional DKPCA in terms of fault monitoring performance. The experimental results demonstrate the potential of the method in nonlinear dynamic process fault diagnosis.
Read full abstract