Abstract

Fault detection of nonlinear dynamic processes can ensure the safety of industrial production processes. Industrial process data are mostly autocorrelated along with strong nonlinear characteristics. And these significant characteristics interact with each other and limit the fault detection performance of traditional methods. Therefore, this paper presents a novel adaptive fault detection method for nonlinear dynamic processes based on kernel entropy component analysis (KECA) integrating the moving window of dissimilarity (DMW) (KECA-DMW). The KECA is used to map the raw data and capture the nonlinear features of the data, which combine with moving window techniques to build the fault detection model. In the process of updating the data in the moving window, the data information of the historical window is combined with that of the current window to obtain a more comprehensive judgment of the current moment. Then a dynamic update fusion method with adaptive weight allocation based on the dissimilarity index is proposed by analyzing the data characteristics of window information at different moments through the dissimilarity. Finally, three example studies with a numerical example, a closed-loop continuously stirred tank reactor and a Tennessee-Eastman process are used to validate the effectiveness of the proposed method. Compared with other nonlinear dynamic process fault detection methods, the results verify the effectiveness of the proposed method in the process monitoring performance of nonlinear dynamic processes in terms of false alarm rate and fault detection rate, where the false alarm rates of the proposed method are only 2%, 1.83%, and 4.33%, while the fault detection rates are 97.4%, 96.83%, and 86.25%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call