Abstract

Probabilistic principal component analysis (PPCA) based approaches have been widely used in the field of process monitoring. However, the traditional PPCA approach is still limited to linear dimensionality reduction. Although the nonlinear projection model of PPCA can be obtained by Gaussian process mapping, the model still lacks robustness and is susceptible to process noise. Therefore, this paper proposes a new nonlinear process monitoring and fault diagnosis approach based on the Bayesian Gaussian latent variable model (Bay-GPLVM). Bay-GPLVM can obtain the posterior distribution rather than point estimation for latent variables, so the model is more robust. Two monitoring statistics corresponding to latent space and residual space are constructed for PM-FD purpose. Further, the cause of fault is analyzed by calculating the gradient value of the variable at the fault point. Compared with several PPCA-based monitoring approaches in theory and practical application, the Bay-GPLVM-based process monitoring approach can better deal with nonlinear processes and show high efficiency in process monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.