Abstract Data collected from moored instruments, deployed over the southeastern Brazilian continental shelf during the summer and winter months of 2001, show internal tide activity near the shelf break. To help to elucidate the observations, a fully three-dimensional nonlinear primitive equation model is applied to simulate the regional barotropic and baroclinic tides. Two semidiurnal (M2 and S2) and two diurnal (K1 and O1) tidal frequencies are considered. Tidal surface elevations are relatively small over the whole modeled area, reaching maximum values of about 0.40 m for M2 and 0.11 m for O1. Comparison between observed and computed tide elevation and Greenwich phase shows reasonable agreement. When the baroclinic response of the model is investigated, stratification is prescribed using summer and winter climatology data of potential density. In this case, the model response to summer and winter stratifications is very similar and internal tides are generated over the shelf break and slope, with vertical displacements up to 25 m, and seaward propagation. Modeled semidiurnal tidal ellipses agree well with winter and summer observations. Observed diurnal tidal ellipses in the middle of the continental shelf and close to the shelf break during summer show an intensification through the water column that could not be represented by the model. Estimates of the total baroclinic M2 offshore energy flux are about 3.5 and 0.5 MW considering winter and summer stratifications, respectively. Although these quantities are three orders of magnitude less than that estimated for regions known for intense internal tides, they refer to offshore fluxes computed for a very small section of the southeastern Brazilian shelf. This is the first published investigation into internal tides in the southwestern Atlantic Ocean off Brazil.
Read full abstract