Abstract

Abstract The effect of barotropic shear in the basic flow on baroclinic instability is investigated using a linear multilevel quasi-geostrophic β-plane channel model and a nonlinear spherical primitive equation model. Barotropic shear has a profound effect on baroclinic instability. It reduces the growth rates of normal modes by severely restricting their structure, confirming earlier results with a two-layer model. Dissipation, in the form of Ekman pumping and Newtonian cooling, does not change the main characteristics of the effect of the shear on normal mode instability. Barotropic shear in the basic state, characterized by large shear vorticity with small horizontal curvature, also effects the nonlinear development of baroclinic waves. The shear limits the energy conversion from the zonal available potential energy to eddy energy, reducing the maximum eddy kinetic energy level reached by baroclinic waves. Barotropic shear, which controls the level of eddy activity, is a major factor which should be considered when parameterizing the eddy temperature and momentum fluxes induced by baroclinic waves in a climate model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call