This article presents a tuned control algorithm for the speed and course of a four-wheeled automobile-type robot as a single nonlinear object, developed by the analytical approach of compensation for the object's dynamics and additive effects. The method is based on assessment of external effects and as a result new, advanced feedback features may appear in the control system. This approach ensures automatic movement of the object with accuracy up to a given reference filter, which is important for stable and accurate control under various conditions. In the process of the synthesis control algorithm, an inverse mathematical model of the robot was built, and reference filters were developed for a closed-loop control system through external effect channels, providing the possibility of physical implementation of the control algorithm and compensation of external effects through feedback. This combined approach allows us to take into account various effects on the robot and ensure its stable control. The developed algorithm provides control of the robot both when moving forward and backward, which expands the capabilities of maneuvering and planning motion trajectories and is especially important for robots working in confined spaces or requiring precise movement into various directions. The efficiency of the algorithm is demonstrated using a computer simulation of a closed-loop control system under various external effects. It is planned to further develop a digital algorithm for implementation on an onboard microcontroller, in order to use the new algorithm in the overall motion control system of a four-wheeled mobile robot.
Read full abstract