Abstract

The research aims to develop a neural network-based lost information restoration method when the complex nonlinear technical object (using the example of helicopter turboshaft engines) sensors fail during operation. The basis of the research is an auto-associative neural network (autoencoder), which makes it possible to restore lost information due to the sensor failure with an accuracy of more than 99%. An auto-associative neural network (autoencoder)-modified training method is proposed. It uses regularization coefficients that consist of the loss function to create a more stable and common model. It works well on the training sample of data and can produce good results on new data. Also, it reduces its overtraining risk when it adapts too much to the training data sample and loses its ability to generalize new data. This is especially important for small amounts of data or complex models. It has been determined based on the computational experiment results (the example of the TV3-117 turboshaft engine) that lost information restoration based on an auto-associative neural network provides a data restoring error of no more than 0.45% in the case of single failures and no more than 0.6% in case of double failures of the engine parameter registration sensor event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.