In the planning of public charging facilities and the charging activity network of users, there is a decision-making conflict among three stakeholders: the government, charging station enterprises, and electric vehicle users. Previous studies have described the tripartite game relationship in a relatively simplistic manner, and when designing charging facility planning schemes, they did not consider scenarios where users’ choice preferences undergo continuous random changes. In order to reduce the impacts of queuing phenomenon and resource idleness on the three participants, we introduce a bilateral matching algorithm combined with the dynamic Huff model as a strategy for EV charging selection in the passenger flow problem based on the three-dimensional activity network of time–space–energy of users. Meanwhile, the Dirichlet distribution is utilized to control the selection preferences on the user side, constructing uncertain scenarios for the choice of user charging activities. In this study, we establish a bilevel programming model that takes into account the uncertainty in social responsibility and user charging selection behavior. Solutions for the activity network and facility planning schemes can be derived based on the collaborative relationships among the three parties. The model employs a robust optimization method to collaboratively design the charging activity network and facility planning scheme. For this mixed-integer nonlinear multi-objective multi-constraint optimization problem, the model is solved by the NSGA-II algorithm, and the optimal compromise scheme is determined by using the EWM-TOPSIS comprehensive evaluation method for the Pareto solution set. Finally, the efficacy of the model and the solution algorithm is illustrated by a simulation example in a real urban space.
Read full abstract