Abstract

This paper discusses the problem of optimal placement and sizing of passive harmonic filters to mitigate harmonics in unbalanced distribution systems. The problem is formulated as a nonlinear multiobjective optimisation problem and solved using the multiobjective genetic algorithm. The performance of the proposed algorithm is tested on unbalanced IEEE 13- and 37-bus three-phase systems. The optimal solutions are obtained based on the following objective functions: 1) minimisation of total harmonic distortion in voltage, 2) minimisation of costs of filters, 3) minimisation of voltage unbalances, and 4) a simultaneous minimisation of total harmonic distortion in voltage, costs of filters, and voltage unbalances. Finally, an analysis of the influence of uncertainties of load powers and changes in system frequency and filter parameters on filter efficiency was performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.