This paper revisits the state vector of an autonomous underwater vehicle (AUV) dynamics coupled with the underwater Markovian stochasticity in the ‘non-linear filtering’ context. The underwater stochasticity is attributed to atmospheric turbulence, planetary interactions, sea surface conditions and astronomical phenomena. In this paper, we adopt the Itô process, a homogeneous Markov process, to describe the AUV state vector evolution equation. This paper accounts for the process noise as well as observation noise correction terms by considering the underwater filtering model. The non-linear filtering of the paper is achieved using the Kolmogorov backward equation and the evolution of the conditional characteristic function. The non-linear filtering equation is the cornerstone formalism of stochastic optimal control systems. Most notably, this paper introduces the non-linear filtering theory into an underwater vehicle stochastic system by constructing a lemma and a theorem for the underwater vehicle stochastic differential equation that were not available in the literature.
Read full abstract