Abstract
We define a general Wiener disorder problem in which a sudden change in a time profile of unknown size has to be detected in white noise of small intensity. Since both the time of the change and its size are unknown, this problem is considerably harder than standard Wiener disorder problems where the size of the change is assumed to be known a priori. We formulate the problem within the Bayesian framework of nonlinear filtering theory, and use Strassen's functional law of the iterated logarithm to bound stochastic measures which arise in the nonlinear filtering equations. This leads to explicit expressions for the detection delay in the optimal statistics for small noise intensities, and we indicate how these can be used to analyse the detection delays of recursive suboptimal detection algorithms for this problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.