In this study, the resonant characteristics of the off-center-driven Chladni plates were systematically investigated for the square and equilateral triangle shapes. Experimental results reveal that the number of the resonant modes is considerably increased for the plates under the off-center-driving in comparison to the on-center-driving. The Green’s functions derived from the nonhomogeneous Helmholtz equation are exploited to numerically analyze the information entropy distribution and the resonant nodal-line patterns. The experimental resonant modes are clearly confirmed to be in good agreement with the maximum entropy states in the Green’s functions. Furthermore, the information entropy distribution of the Green’s functions can be used to reveal that more eigenmodes can be triggered in the plate under the off-center-driving than the on-center-driving. By using the multiplication of the resonant modes in the off-center-driving, the dispersion relation between the experimental frequency and the theoretical wave number can be deduced with more accuracy. It is found that the deduced dispersion relations agree quite well with the Kirchhoff–Love plate theory.
Read full abstract