Abstract

We theoretically investigate the optical properties of a one-dimensional non-Hermitian dispersive layered system with saturable gain and loss. We solve the nonhomogeneous Helmholtz equation perturbatively by applying the modified transfer matrix method and we obtain closed-form expressions for the reflection or transmission coefficients for TM incident waves. The nonreciprocity of the scattering process can be directly inferred from the analysis of the obtained expressions. It is shown that by tuning the parameters of the layers we can effectively control the impact of nonlinearity on the scattering characteristics of the non-Hermitian layered structure. In particular, we investigate the asymmetric and nonreciprocal characteristics of the reflectance and transmittance of multilayered parity-time (PT)-symmetric slab. We demonstrate that incident electromagnetic wave may effectively tunnel through the PT-symmetric multilayered structures with zero reflection. The effect of nonlinearity to the scattering matrix eigenvalues is systematically examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.