The structure of thermoset composite laminated plates is made by stacking layers of plies with different fiber orientations. Similarly, the stiffened panel structure is assembled from components with varying ply configurations, resulting in thermal residual stresses and processing-induced deformations (PIDs) during manufacturing. To mitigate the residual stresses caused by the geometric features of corner structures and the mismatch between the stiffener-skin ply orientations, which lead to PIDs in composite-stiffened panels, this study proposes a multi-objective stacking optimization strategy based on an improved adaptive genetic algorithm (IAGA). The viscoelastic constitutive model was employed to describe the modulus variation during the curing process to ensure computational accuracy. In this study, the IAGA was proposed to optimize the ply-stacking sequence of L-shaped stiffeners in composite laminated structures. The results demonstrate a reduction in the spring-in angle to 0.12°, a 50% improvement compared to symmetric balanced stacking designs, while the buckling eigenvalues were improved by 20%. Additionally, the IAGA outperformed the traditional non-dominated sorting genetic algorithm (NSGA), achieving a threefold increase in the Pareto solution diversity under identical constraints and reducing the convergence time by 70%. These findings validate the effectiveness of asymmetric ply design and provide a robust framework for enhancing the structural performance and manufacturability of composite laminates.
Read full abstract