We obtain exact \(\mathcal {PT}\)-symmetric and \(\mathcal {PT}\)-antisymmetric nonautonomous soliton solutions on background waves. These solutions indicate that dispersion and nonlinear coefficients influence form factors of nonautonomous solitons such as amplitude, width and center; however, linear coupling coefficient and gain/loss parameter only influence phase of solitons. Based on these solutions, the controllable behaviors such as postpone, sustainment and restraint on continuous wave background in an exponential decreasing dispersion system are discussed. Moreover, the propagation behaviors of solitons on the cnoidal wave background in different dispersion systems are also studied.