Abstract
Under investigation in this paper is a variable-coefficient Gross–Pitaevskii equation which describes the Bose–Einstein condensate. Lax pair, bilinear forms and bilinear Bäcklund transformation for the equation under some integrable conditions are derived. Based on the Lax pair and bilinear forms, double Wronskian solutions are constructed and verified. The [Formula: see text]th-order nonautonomous solitons in terms of the double Wronskian determinant are given. Propagation and interaction for the first- and second-order nonautonomous solitons are discussed from three cases. Amplitudes of the first- and second-order nonautonomous solitons are affected by a real parameter related to the variable coefficients, but independent of the gain-or-loss coefficient [Formula: see text] and linear external potential coefficient [Formula: see text]. For Case 1 [Formula: see text], [Formula: see text] leads to the accelerated propagation of nonautonomous solitons. Parabolic-, cubic-, exponential- and cosine-type nonautonomous solitons are exhibited due to the different choices of [Formula: see text]. For Case 2 [Formula: see text], if the real part of the spectral parameter equals 0, stationary soliton can be formed. If we take the harmonic external potential coefficient [Formula: see text] as a positive constant and let the real parts of the two spectral parameters be the same, bound-state-like structures can be formed, but there are only one attractive and two repulsive procedures. For Case 3 [[Formula: see text] and [Formula: see text] are taken as nonzero constants], head-on interaction, overtaking interaction and bound-state structure can be formed based on the signs of the two spectral parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.