Exotic species storing seeds in the canopy (serotinous species) can experience a clear advantage in fire-prone communities that lack native taxa with such fire-resistant traits. In addition, selection in the new environment can potentially increase the frequency of fire-adapted characteristics such as serotiny. We studied the potential role of fire favoring the serotinous, non-native conifer Pinus radiata in NW Patagonia. We characterized the degree of serotiny (percentage of serotinous cones) and the size of the canopy seed bank in the unburned plantation and in stands of trees recruited after a fire 30 years ago as a proxy for invasion potential. Fire had a positive effect, increasing serotiny in post-fire P. radiata stands. Post-fire recruited cohorts showed higher serotiny levels and a larger canopy seed bank compared with plantations. Our study suggests that fire-linked traits like serotiny may be subjected to a rapid, fire-driven selection process in fire-adapted species such as P. radiata invading fire-prone ecosystems. Thus, increased serotiny can lead to higher postfire invasion densities, which in turn create a positive feedback loop in invaded areas under recurrent fires.