Golden jackal optimization (GJO) is an effective metaheuristic algorithm that imitates the cooperative hunting behavior of the golden jackal. However, since the update of the prey’s position often depends on the male golden jackal and there is insufficient diversity of golden jackals in some cases, it is prone to falling into a local optimal optimum. In order to address these drawbacks of GJO, this paper proposes an improved algorithm, called a hybrid GJO and golden sine (S) algorithm (Gold-SA) with dynamic lens-imaging (L) learning (LSGJO). First, this paper proposes novel dual golden spiral update rules inspired by Gold-SA. These rules give GJO the ability to think like a human (Gold-SA), making the golden jackal more intelligent in the process of preying, and improving the ability and efficiency of optimization. Second, a novel nonlinear dynamic decreasing scaling factor is introduced into the lens-imaging learning operator to maintain the population diversity. The performance of LSGJO is verified through 23 classical benchmark functions and 3 complex design problems in real scenarios. The experimental results show that LSGJO converges faster and more accurately than 11 state-of-the-art optimization algorithms, the global and local search ability has improved significantly, and the proposed algorithm has shown superior performance in solving constrained problems.
Read full abstract