SUMMARYExtending fixed‐grid time integration schemes for unsteady CFD applications to moving grids, while formally preserving their numerical stability and time accuracy properties, is a nontrivial task. A general computational framework for constructing stability‐preserving ALE extensions of Eulerian multistep time integration schemes can be found in the literature. A complementary framework for designing accuracy‐preserving ALE extensions of such schemes is also available. However, the application of neither of these two computational frameworks to a multistage method such as a Runge–Kutta (RK) scheme is straightforward. Yet, the RK methods are an important family of explicit and implicit schemes for the approximation of solutions of ordinary differential equations in general and a popular one in CFD applications. This paper presents a methodology for filling this gap. It also applies it to the design of ALE extensions of fixed‐grid explicit and implicit second‐order time‐accurate RK (RK2) methods. To this end, it presents the discrete geometric conservation law associated with ALE RK2 schemes and a method for enforcing it. It also proves, in the context of the nonlinear scalar conservation law, that satisfying this discrete geometric conservation law is a necessary and sufficient condition for a proposed ALE extension of an RK2 scheme to preserve on moving grids the nonlinear stability properties of its fixed‐grid counterpart. All theoretical findings reported in this paper are illustrated with the ALE solution of inviscid and viscous unsteady, nonlinear flow problems associated with vibrations of the AGARD Wing 445.6. Copyright © 2011 John Wiley & Sons, Ltd.