Abstract
When neglecting capillarity, two-phase incompressible flow in porous media is modelled as a scalar nonlinear hyperbolic conservation law. A change in the rock type results in a change of the flux function. Discretizing in one-dimensional with a finite volume method, we investigate two numerical fluxes, an extension of the Godunov flux and the upstream mobility flux, the latter being widely used in hydrogeology and petroleum engineering. Then, in the case of a changing rock type, one can give examples when the upstream mobility flux does not give the right answer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.