This paper develops a multiband or wavelet approach for capturing the AM-FM components of modulated signals immersed in noise. The technique utilizes the recently-popularized nonlinear energy operator Psi (s)=(s)/sup 2/-ss to isolate the AM-FM energy, and an energy separation algorithm (ESA) to extract the instantaneous amplitudes and frequencies. It is demonstrated that the performance of the energy operator/ESA approach is vastly improved if the signal is first filtered through a bank of bandpass filters, and at each instant analyzed (via Psi and the ESA) using the dominant local channel response. Moreover, it is found that uniform (worst-case) performance across the frequency spectrum is attained by using a constant-Q, or multiscale wavelet-like filter bank. The elementary stochastic properties of Psi and of the ESA are developed first. The performance of Psi and the ESA when applied to bandpass filtered versions of an AM-FM signal-plus-noise combination is then analyzed. The predicted performance is greatly improved by filtering, if the local signal frequencies occur in-band. These observations motivate the multiband energy operator and ESA approach, ensuring the in-band analysis of local AM-PM energy. In particular, the multi-bands must have the constant-Q or wavelet scaling property to ensure uniform performance across bands. The theoretical predictions and the simulation results indicate that improved practical strategies are feasible for tracking and identifying AM-FM components in signals possessing pattern coherencies manifested as local concentrations of frequencies. >
Read full abstract