<p style='text-indent:20px;'>The paper is concerned with an initial-boundary-value problem of the sixth order Boussinesq equation posed on a quarter plane with non-homogeneous boundary conditions: <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$\begin{equation}\label{0}\begin{cases}u_{tt}-u_{xx}+β u_{xxxx}-u_{xxxxxx}+(u^2)_{xx} = 0, \, \, \, \, \,\,\,\,\, \mbox{for }x>0\mbox{, }t>0, \\u(x, 0) = \varphi (x), u_t(x, 0) = ψ "(x), \\u(0, t) = h_1(t), u_{xx}(0, t) = h_2(t), u_{xxxx}(0, t) = h_3(t), \end{cases}\, \, \, \, \, \, \, \, \, \, (1)\end{equation}$ \end{document} </tex-math></disp-formula> <p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$β = ± 1$\end{document}</tex-math></inline-formula> . It is shown that the problem is locally well-posed in the space $H^s(\mathbb{R}^+)$ for any 0≤s<<inline-formula><tex-math id="M2">\begin{document}$\frac{13}{2}$\end{document}</tex-math></inline-formula> with the initial data <inline-formula><tex-math id="M3">\begin{document}$ (\varphi, ψ)$\end{document}</tex-math></inline-formula> in the space <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$H^s(\mathbb{R}^+)× H^{s-1}(\mathbb{R}^+)$ \end{document} </tex-math></disp-formula> <p style='text-indent:20px;'>and the naturally compatible boundary data <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$\mbox{ $h_1∈ H_{loc}^{\frac{s+1}{3}}(\mathbb{R}^+)$, $h_2∈ H_{loc}^{\frac{s-1}{3}}(\mathbb{R}^+) \text{and}\,\,\, h_3∈ H_{loc}^{\frac{s-3}{3}}(\mathbb{R}^+)$}$ \end{document} </tex-math></disp-formula> <p style='text-indent:20px;'> with optimal regularity.
Read full abstract