Abstract

Using grids (meshes) formed from polyhedra (polygons in the two-dimensional case), we consider differential and boundary grid operators that are consistent in the sense of satisfying the grid analog of the integral identity – a corollary of the formula for the divergence of the product or a scalar by a vector. These operators are constructed and applied in the Mimetic Finite Difference (MFD) method, in which grid scalars are defined inside the grid cells and grid vectors are defined by their local normal coordinates on the planar faces of the grid cells. We show that the basic grid summation identity is a limit of an integral identity written for piecewise-smooth approximations of the grid functions. We also show that the MFD formula for the reconstruction of a grid vector field is obtained by approximation analysis of the summation identity. Grid embedding theorems are proved, analogous to well-known finite-difference embedding theorems that are used in finite-difference scheme theory to derive prior bounds for convergence analysis of the solutions of finite-difference nonhomogeneous boundary-value problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.