Manganese (Mn) is an element which is both essential for regulating neurological and skeletal functions in the human body and also toxic when humans are exposed to excessive levels. Its excessive inhalation as a result of exposure through industrial and environmental emissions can cause neurological damage, which may manifest as memory deficit, loss of motor control and reduction in the refinement of certain body motions. A number of clinical studies demonstrate that biological monitoring of Mn exposure using body fluids, particularly blood, plasma/serum and urine is of very limited use and reflect only the most recent exposure and rapidly return to within normal ranges. In this context, a non-invasive neutron activation technique has been developed at the McMaster University accelerator laboratory that could provide an alternative to measure manganese stored in the bones of exposed subjects. In a first pilot study we conducted recently on non-exposed human subjects to measure the ratio of Mn to Ca in hand bones, it was determined that the technique needed further development to improve the precision of the measurements. It could be achieved by improving the minimum detection limit (MDL) of the system from 2.1 µg Mn/g Ca to the reference value of 0.6 µg g−1 Ca (range: 0.16–0.78 µg Mn/g Ca) for the non-exposed population. However, the developed procedure might still be a suitable means of screening patients and people exposed to excessive amounts of Mn, who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. To improve the MDL of the technique to the expected levels of Mn in a reference population, the present study investigates further optimization of irradiation conditions, which includes the optimal selection of proton beam energy, beam current and irradiation time and the effect of upgrading the 4π detection system. The maximum local dose equivalent that could be given to the hand as a result of irradiation was constrained to be less than 150 mSv as opposed to the previously imposed dose equivalent limit of 20 mSv. A maximum beam current, which could be delivered on the lithium target to produce neutrons, was restricted to 500 µA. The length of irradiation intervals larger than 10 min, was considered inconvenient and impractical to implement with Mn measurements in humans. To fulfil the requirements for developing a protocol for in vivo bone Mn measurements, a revised estimate of the dose equivalent has been presented here. Beam energy of 1.98 MeV was determined to be optimal to complete the irradiation procedure within 10 min using 500 µA beam current. The local dose equivalent given to hand was estimated as 118 mSv, which is lower by a factor of 1.5 compared to that of 2.00 MeV. The optimized beam parameters are expected to improve the currently obtained detection limit of 2.1 µg Mn/g Ca to 0.6 µg Mn/g Ca. Using this dose equivalent delivered to the central location of the hand, the average dose equivalent to the hand of 74 mSv and an effective dose of approximately 70 µSv will be accompanying the non-invasive, in vivo measurements of bone Mn, which is little over the chest radiograph examination dose.