Preparation of Pt-based nanocatalysts with high catalytic activity and exploration of their novel applications have attracted significant interest in the nanoscale field. Herein, we report a facile synthesis of dendritic Pt3Ni nanoalloys and their applications for electrochemical nonenzymatic dopamine biosensors. As a result of their unique structure, the dendritic Pt3Ni nanoalloys show high electrocatalytic activity towards dopamine oxidation. Amperometric dopamine biosensors based on dendritic Pt3Ni nanoalloy microelectrode exhibit a wide linear detection ranges from 0.5 μM to 250 μM with ultrahigh sensitivity, fast response, and excellent selectivity at a potential of 0.3 V in a 0.1 M phosphate buffered solution (pH = 7.2). The limit of detection on dendritic Pt3Ni nanoalloy microelectrodes can decrease down to 10 nM, which is the least concentration of dopamine in serum samples with a value of sensitivity up to 4.6 μA mg-1Pt cm-2. This study shows an effective approach for the development of dendritic Pt3Ni nanoalloys as electrocatalysts for electrochemical nonenzymatic dopamine biosensors.
Read full abstract