Microbial extracellular subtilases are highly active proteolytic enzymes commonly used in commercial applications. These subtilases are synthesized in their inactive proform, which matures into the active protease under the control of the propeptide domain. In mesophilic bacterial prosubtilases, the propeptide functions as both an obligatory chaperone and an inhibitor of the subtilase catalytic domain. In contrast, the propeptides of hyperthermophilic archaeal prosubtilases act mainly as tight inhibitors and are not essential for subtilase folding. It is unclear whether this stronger inhibitory activity of hyperthermophilic propeptides results in their higher selectivity toward their cognate subtilases, in contrast to promiscuous mesophilic propeptides. Here, we showed that the propeptide of pernisine, a hyperthermostable archaeal subtilase, strongly interacts with and inhibits pernisine, but not the homologous subtilisin Carlsberg and proteinase K. Instead, the pernisine propeptide was readily degraded by subtilisin Carlsberg and proteinase K. In addition, the catalytic domain of unprocessed propernisine was also susceptible to degradation but became proteolytically stable after autoprocessing of propernisine into the inactive, noncovalent complex propeptide:pernisine. This allowed efficient transactivation of the autoprocessed complex propeptide:pernisine through degradation of pernisine propeptide by subtilisin Carlsberg and proteinase K at mesophilic temperature. Moreover, we demonstrated that active pernisine molecules are inhibited by the propeptide that is released after pernisine-catalyzed degradation of the unprocessed propernisine catalytic domain. This highlights the high inhibitory potency of the hyperthermophilic propeptide toward its cognate subtilase and its importance in regulating subtilase maturation, to prevent the degradation of the unprocessed subtilase precursors by the prematurely activated molecules. IMPORTANCE Many microorganisms secrete proteases into their environment to degrade protein substrates for their growth. The important group of these extracellular enzymes are subtilases, which are also widely used in practical applications. These subtilases are inhibited by their propeptide domain, which is degraded during the prosubtilase maturation process. Here, we showed that the propeptide of pernisine, a prion-degrading subtilase from the hyperthermophilic archaeon, strongly inhibits pernisine with extraordinarily high binding affinity. This interaction proved to be highly selective, as pernisine propeptide was rapidly degraded by mesophilic pernisine homologs. This in turn allowed rapid transactivation of propernisine by mesophilic subtilases at lower temperatures, which might simplify the procedures for preparation of active pernisine for commercial use. The results reported in this study suggest that the hyperthermophilic subtilase propeptide evolved to function as tight and selective regulator of maturation of the associated prosubtilase to prevent its premature activation under high temperatures.
Read full abstract