Abstract

Non-covalent interactions of plant proteins and polyphenols is often occurred in food production and processing. However, the combination of the two may form a precipitate to reduce the aesthetic value and taste. In this study, we prepared different proportions of soy protein isolate (SPI) and catechin/epigallocatechin-3-gallate (EGCG) non-covalent complexes. The structural and conformational changes of the complex in the non-covalent interaction system were explored by multi-spectral technology, and the transition mechanism from the solution-state to the precipitation-state was analyzed. As a “bridge”, polyphenols made more SPI cross-linked and aggregate, and reduce hydrophobicity. The enhancement of resonance Rayleigh scattering further confirmed the formation of macromolecular particles. SPI mainly combined with catechin/EGCG through hydrogen bonds, and more benzene rings and phenol hydroxyl structure of EGCG were conducive to the formation of a more stable complex with protein. In addition, the increase of polyphenol concentration promoted the conjugation effect (hydrophobic interaction and electrostatic interaction) with protein, resulting in insoluble high molecular weight aggregate precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.