Subordination is the basis of the analytic approach to free additive and multiplicative convolution. We extend this approach to a more general setting and prove that the conditional expectation [Formula: see text] for free random variables [Formula: see text] and a Borel function [Formula: see text] is a resolvent again. This result allows the explicit calculation of the distribution of noncommutative polynomials of the form [Formula: see text]. The main tool is a new combinatorial formula for conditional expectations in terms of Boolean cumulants and a corresponding analytic formula for conditional expectations of resolvents, generalizing subordination formulas for both additive and multiplicative free convolutions. In the final section, we illustrate the results with step by step explicit computations and an exposition of all necessary ingredients.