Abstract
Subordination is the basis of the analytic approach to free additive and multiplicative convolution. We extend this approach to a more general setting and prove that the conditional expectation [Formula: see text] for free random variables [Formula: see text] and a Borel function [Formula: see text] is a resolvent again. This result allows the explicit calculation of the distribution of noncommutative polynomials of the form [Formula: see text]. The main tool is a new combinatorial formula for conditional expectations in terms of Boolean cumulants and a corresponding analytic formula for conditional expectations of resolvents, generalizing subordination formulas for both additive and multiplicative free convolutions. In the final section, we illustrate the results with step by step explicit computations and an exposition of all necessary ingredients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.