Abstract
Abstract We give an analytical approach to the definition of additive and multiplicative free convolutions which is based on the theory of Nevanlinna and Schur functions. We consider the set of probability distributions as a semigroup M equipped with the operation of free convolution and prove a Khintchine type theorem for the factorization of elements of this semigroup. An element of M contains either indecomposable (“prime”) factors or it belongs to a class, say I 0, of distributions without indecomposable factors. In contrast to the classical convolution semigroup, in the free additive and multiplicative convolution semigroups the class I 0 consists of units (i.e. Dirac measures) only. Furthermore we show that the set of indecomposable elements is dense in M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.