Abstract
In this article we study the formal side of operations in free harmonic analysis and examine the emerging general picture of all this. We establish an analytic correspondence of semi-rings between Witt vectors and free probability, by building on previous joint work with Friedrich and McKay (Formal groups, Witt vectors and free probability, 2012. arXiv:1204.6522). In particular, an exponential map, which relates the free additive convolution semigroup on $${\mathbb {R}}$$ with the free multiplicative convolution semigroup on either the unit circle or the positive real axis of compactly supported, freely infinitely divisible probability measures, is derived with complex analytic methods. Then we define several novel operations on these sets, discuss their relation with classically infinitely divisible measures and determine the internal geometry of the spaces involved. Finally, we formalise the structure induced by the various operations we have introduced, in the language of operads and algebraic theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.