The “noncommutative graphs” which arise in quantum error correction are a special case of the quantum relations introduced in Weaver (Quantum relations. Mem Am Math Soc 215(v–vi):81–140, 2012). We use this perspective to interpret the Knill–Laflamme error-correction conditions (Knill and Laflamme in Theory of quantum error-correcting codes. Phys Rev A 55:900-911, 1997) in terms of graph-theoretic independence, to give intrinsic characterizations of Stahlke’s noncommutative graph homomorphisms (Stahlke in Quantum zero-error source-channel coding and non-commutative graph theory. IEEE Trans Inf Theory 62:554–577, 2016) and Duan, Severini, and Winter’s noncommutative bipartite graphs (Duan et al., op. cit. in Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number. IEEE Trans Inf Theory 59:1164–1174, 2013), and to realize the noncommutative confusability graph associated to a quantum channel (Duan et al., op. cit. in Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number. IEEE Trans Inf Theory 59:1164–1174, 2013) as the pullback of a diagonal relation. Our framework includes as special cases not only purely classical and purely quantum information theory, but also the “mixed” setting which arises in quantum systems obeying superselection rules. Thus we are able to define noncommutative confusability graphs, give error correction conditions, and so on, for such systems. This could have practical value, as superselection constraints on information encoding can be physically realistic.