Abstract

We continue the study of the quantum channel version of Shannon’s zero-error capacity problem. We generalize the celebrated Haemers bound to noncommutative graphs (obtained from quantum channels). We prove basic properties of this bound, such as additivity under the direct sum and submultiplicativity under the tensor product. The Haemers bound upper bounds the Shannon capacity of noncommutative graphs, and we show that it can outperform other known upper bounds, including noncommutative analogues of the Lovasz theta function (Duan–Severini–Winter, IEEE Trans. Inform. Theory , 2013 and Boreland–Todorov–Winter, arXiv preprint , 2019).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.