Abstract

Operator systems (noncommutative operator graphs in other terminology) play a major role in the theory of quantum error correcting codes. Any operator graph is associated with a number of quantum channels. The possibility to transmit quantum information through a quantum channel with zero error is determined by the geometrical properties of the corresponding graph. Noncommutative operator graphs are known to be generated by positive operator-valued measures (POVMs). In turn, many principal POVMs consist of multiple of projections. We construct the model in which the graph is a linear envelope of two projection-valued resolutions of identities in a Hilbert space. Conditions for the existence of quantum anticliques (error-correcting codes) for the graph are investigated. The connection with Shirokov’s example of quantum superactivation (Shirokov in Probl Inform Transm 51(2):87–102, 2015; Shirokov and Shulman in Commun Math Phys 335:1159, 2015) is revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.