In this work, we are the first to perform a theoretical analysis of photoinduced charge transfer in the intercalation complex of thionine (TH) with double-stranded DNA, which was observed in experiments. Efficient DNA binding and long-wave absorption maximum make TH an attractive photosensitizer. d(CpG)2 tetranucleotide was used as a minimal model DNA fragment. Intercalation of TH between pairs of nucleobases causes the transfer of a small negative charge (0.24 e) from the tetranucleotide to the dye. S0 → S1 photoexcitation of their complex using visible light leads to the transfer in the same direction of a significant negative charge (0.9 e). This electronic transition has a HOMO → LUMO electronic configuration, with HOMO localized on one of the two phosphate groups of the tetranucleotide, and LUMO on TH; the latter has the same shape as the LUMO of free dye. In the complex, TH, by its amino groups, forms two intermolecular H-bonds: with the deoxyribose oxygen atom of one d(CpG)2 strand and with the non-bridging oxygen atom of the phosphate group of the other strand. In this case, the H-bond TH with the phosphate group is stronger than with the sugar, but the charge transfer is carried out from another phosphate group through the sugar to the dye. Thus, charge transfer occurs along the longer of the two paths. However, the path of charge transfer depends on the parameters of the excitation since higher electronic transitions also include the second phosphate group, i.e., a short way is also used. For the calculations of the excitation of the complex, TD-DFT was used in combination with a set of ten functionals (CAM-B3LYP + D3BJ, ωB97XD, LC-ωHPBE, M052X, M062X, M06HF, M08HX, M11, MN15, and SOGGA11X), which have proven themselves well in modeling the excitation of dimers of aromatic molecules. Of these, LC-ωHPBE, which gave the best agreement with the experiment, was selected for the final calculations. It was used in combination with the 6-31 + + G(d,p) basis set and the IEFPCM solvent model. The photoinduced charge redistribution was quantitatively estimated using natural population analysis, and visually by building the frontier molecular and natural transition orbitals.
Read full abstract