Abstract
Silicon oxycarbide (SiOC), Ca- and Mg-modified silicon oxycarbide (SiCaOC and SiMgOC) were synthesized via sol-gel processing with subsequent pyrolysis in an inert gas atmosphere. The physicochemical structures of the materials were characterized by XRD, SEM, FTIR, and 29Si MAS NMR. Biocompatibility and in vitro bioactivity were detected by MTT, cell adhesion assay, and simulated body fluid (SBF) immersion test. Mg and Ca were successfully doped into the network structure of SiOC, and the non-bridging oxygens (NBO) were formed. The hydroxycarbonate apatite (HCA) was formed on the modified SiOC surface after soaking in simulated body fluid (SBF) for 14 days, and the HCA generation rate of SiCaOC was higher than that of SiMgOC. Accompanying the increase of bioactivity, the network connectivity (NC) of the modified SiOC decreased from 6.05 of SiOC to 5.80 of SiCaOC and 5.60 of SiMgOC. However, structural characterization and biological experiments revealed the nonlinear relationship between the biological activity and NC of the modified SiOC materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have